Author | Antonella Cupillari | |

ISBN-10 | 9780123822185 | |

Release | 2011-11-25 | |

Pages | 296 | |

Download Link | Click Here |

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics |

Author | Brahima Mbodje Ph. D. | |

ISBN-10 | 9781463429676 | |

Release | 2011-06-01 | |

Pages | 356 | |

Download Link | Click Here |

As its title indicates, this book is about logic, sets and mathematical proofs. It is a careful, patient and rigorous introduction for readers with very limited mathematical maturity. It teaches the reader not only how to read a mathematical proof, but also how to write one. To achieve this, we carefully lay out all the various proof methods encountered in mathematical discourse, give their logical justifications, and apply them to the study of topics [such as real numbers, relations, functions, sequences, fine sets, infinite sets, countable sets, uncountable sets and transfinite numbers] whose mastery is important for anyone contemplating advanced studies in mathematics. The book is completely self-contained; since the prerequisites for reading it are only a sound background in high school algebra. Though this book is meant to be a companion specifically for senior high school pupils and college undergraduate students, it will also be of immense value to anyone interested in acquiring the tools and way of thinking of the mathematician. |

Author | Charles Roberts | |

ISBN-10 | 9781482246889 | |

Release | 2014-12-17 | |

Pages | 414 | |

Download Link | Click Here |

Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis. |

Author | CTI Reviews | |

ISBN-10 | 9781467298216 | |

Release | 2016-10-16 | |

Pages | 37 | |

Download Link | Click Here |

Facts101 is your complete guide to Mathematical Proofs, A Transition to Advanced Mathematics. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time. |

Author | Rowan Garnier | |

ISBN-10 | 047196199X | |

Release | 1996 | |

Pages | 317 | |

Download Link | Click Here |

Proof" has been & remains one of the concepts which characterises mathematics. Covering basic propositional & predicate logic as well as discussing axiom systems & formal proofs, the book seeks to explain what mathematicians understand by proofs & how they are communicated. The authors explore the principle techniques of direct & indirect proof including induction, existence & uniqueness proofs, proof by contradiction, constructive & non-constructive proofs, etc. Many examples from analysis & modern algebra are included. The exceptionally clear style & presentation ensures that the book will be useful & enjoyable to those studying & interested in the notion of mathematical "proof. |

Author | John Taylor | |

ISBN-10 | 9781466514911 | |

Release | 2016-04-19 | |

Pages | 414 | |

Download Link | Click Here |

The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples. |

Author | Gary Chartrand | |

ISBN-10 | 0321797094 | |

Release | 2013 | |

Pages | 400 | |

Download Link | Click Here |

Normal 0 false false false Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses. |

Author | Stan Gibilisco | |

ISBN-10 | 9780071469920 | |

Release | 2005-05-13 | |

Pages | 290 | |

Download Link | Click Here |

Almost every student has to study some sort of mathematical proofs, whether it be in geometry, trigonometry, or with higher-level topics. In addition, mathematical theorems have become an interesting course for many students outside of the mathematical arena, purely for the reasoning and logic that is needed to complete them. Therefore, it is not uncommon to have philosophy and law students grappling with proofs. This book is the perfect resource for demystifying the techniques and principles that govern the mathematical proof area, and is done with the standard “Demystified” level, questions and answers, and accessibility. |

Author | Karine Chemla | |

ISBN-10 | 9781139510585 | |

Release | 2012-07-05 | |

Pages | ||

Download Link | Click Here |

This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof. |

Author | Robert B. Reisel | |

ISBN-10 | 9781461381884 | |

Release | 2012-12-06 | |

Pages | 120 | |

Download Link | Click Here |

Science students have to spend much of their time learning how to do laboratory work, even if they intend to become theoretical, rather than experimental, scientists. It is important that they understand how experiments are performed and what the results mean. In science the validity of ideas is checked by experiments. If a new idea does not work in the laboratory, it must be discarded. If it does work, it is accepted, at least tentatively. In science, therefore, laboratory experiments are the touchstones for the acceptance or rejection of results. Mathematics is different. This is not to say that experiments are not part of the subject. Numerical calculations and the examina tion of special and simplified cases are important in leading mathematicians to make conjectures, but the acceptance of a conjecture as a theorem only comes when a proof has been constructed. In other words, proofs are to mathematics as laboratory experiments are to science. Mathematics students must, therefore, learn to know what constitute valid proofs and how to construct them. How is this done? Like everything else, by doing. Mathematics students must try to prove results and then have their work criticized by experienced mathematicians. They must critically examine proofs, both correct and incorrect ones, and develop an appreciation of good style. They must, of course, start with easy proofs and build to more complicated ones. |

Author | Ethan D. Bloch | |

ISBN-10 | 9781461221302 | |

Release | 2013-12-01 | |

Pages | 424 | |

Download Link | Click Here |

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same. |

Author | Imre Lakatos | |

ISBN-10 | 9781316425336 | |

Release | 2015-10-08 | |

Pages | ||

Download Link | Click Here |

Imre Lakatos's Proofs and Refutations is an enduring classic, which has never lost its relevance. Taking the form of a dialogue between a teacher and some students, the book considers various solutions to mathematical problems and, in the process, raises important questions about the nature of mathematical discovery and methodology. Lakatos shows that mathematics grows through a process of improvement by attempts at proofs and critiques of these attempts, and his work continues to inspire mathematicians and philosophers aspiring to develop a philosophy of mathematics that accounts for both the static and the dynamic complexity of mathematical practice. With a specially commissioned Preface written by Paolo Mancosu, this book has been revived for a new generation of readers. |

Author | Charles Roberts | |

ISBN-10 | 1420069551 | |

Release | 2009-06-24 | |

Pages | 434 | |

Download Link | Click Here |

Shows How to Read & Write Mathematical Proofs Ideal Foundation for More Advanced Mathematics Courses Introduction to Mathematical Proofs: A Transition facilitates a smooth transition from courses designed to develop computational skills and problem solving abilities to courses that emphasize theorem proving. It helps students develop the skills necessary to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It will prepare them to succeed in more advanced mathematics courses, such as abstract algebra and geometry. |

Author | Edited by Paul F. Kisak | |

ISBN-10 | 1519464339 | |

Release | 2015-11-20 | |

Pages | 256 | |

Download Link | Click Here |

In mathematics, a proof is a deductive argument for a mathematical statement. In the argument, other previously established statements, such as theorems, can be used. In principle, a proof can be traced back to self-evident or assumed statements, known as axioms. Proofs are examples of deductive reasoning and are distinguished from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproved proposition that is believed true is known as a conjecture. Proofs employ logic but usually include some amount of natural language which usually admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of rigorous informal logic. Purely formal proofs, written in symbolic language instead of natural language, are considered in proof theory. This book contains 'solutions' to some of the most noteworthy mathematical proofs (QED). |

Author | Steven G. Krantz | |

ISBN-10 | 0387487441 | |

Release | 2011-05-13 | |

Pages | 264 | |

Download Link | Click Here |

This text explores the many transformations that the mathematical proof has undergone from its inception to its versatile, present-day use, considering the advent of high-speed computing machines. Though there are many truths to be discovered in this book, by the end it is clear that there is no formalized approach or standard method of discovery to date. Most of the proofs are discussed in detail with figures and equations accompanying them, allowing both the professional mathematician and those less familiar with mathematics to derive the same joy from reading this book. |

Author | Source Wikipedia | |

ISBN-10 | 1230780483 | |

Release | 2013-09 | |

Pages | 60 | |

Download Link | Click Here |

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Pages: 58. Chapters: Back-and-forth method, Bijective proof, Cantor's diagonal argument, Combinatorial proof, Commutative diagram, Conditional proof, Constructive proof, Direct proof, Double counting (proof technique), Elementary proof, Equalization (proof), Law of large numbers, List of incomplete proofs, List of long proofs, List of mathematical proofs, Mathematical fallacy, Mathematical induction, Minimal counterexample, Of the form, Original proof of Godel's completeness theorem, Probabilistically checkable proof, Probabilistic method, Probabilistic proofs of non-probabilistic theorems, Proofs from THE BOOK, Proof by contradiction, Proof by contrapositive, Proof by exhaustion, Proof by infinite descent, Proof by intimidation, Proof of impossibility, Proof sketch for Godel's first incompleteness theorem, Proof without words, Q.E.D., Structural induction, Tombstone (typography), Turing's proof. Excerpt: Turing's proof, is a proof by Alan Turing, first published in January 1937 with the title On Computable Numbers, With an Application to the Entscheidungsproblem. It was the second proof of the assertion (Alonzo Church's proof was first) that some decision problems are "undecidable" there is no single algorithm that infallibly gives a correct YES or NO answer to each instance of the problem. In his own words: ..".what I shall prove is quite different from the well-known results of Godel ... I shall now show that there is no general method which tells whether a given formula U is provable in K ..." (Undecidable p. 145). Turing preceded this proof with two others. The second and third both rely on the first. All rely on his development of type-writer-like "computing machines" that obey a simple set of rules and his subsequent development of a "universal computing machine." In 1905 Jules Richard presented this profound paradox. Alan... |

Author | James Robert Brown | |

ISBN-10 | 9781135902391 | |

Release | 2010-03-17 | |

Pages | 264 | |

Download Link | Click Here |

In his long-awaited new edition of Philosophy of Mathematics, James Robert Brown tackles important new as well as enduring questions in the mathematical sciences. Can pictures go beyond being merely suggestive and actually prove anything? Are mathematical results certain? Are experiments of any real value? This clear and engaging book takes a unique approach, encompassing non-standard topics such as the role of visual reasoning, the importance of notation, and the place of computers in mathematics, as well as traditional topics such as formalism, Platonism, and constructivism. The combination of topics and clarity of presentation make it suitable for beginners and experts alike. The revised and updated second edition of Philosophy of Mathematics contains more examples, suggestions for further reading, and expanded material on several topics including a novel approach to the continuum hypothesis. |