Author | Gary Chartrand | |

ISBN-10 | 0321797108 | |

Release | 2012-09-17 | |

Pages | 416 | |

Download Link | Click Here |

This edition features the exact same content as the traditional text in a convenient, three-hole-punched, loose-leaf version. Books a la Carte also offer a great value--this format costs significantly less than a new textbook. Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses. |

Author | Antonella Cupillari | |

ISBN-10 | 9780123822185 | |

Release | 2011-11-25 | |

Pages | 296 | |

Download Link | Click Here |

The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics |

Author | Martin Aigner | |

ISBN-10 | 9783662442050 | |

Release | 2014-08-06 | |

Pages | 308 | |

Download Link | Click Here |

This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questio ns so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011. |

Author | Charles Roberts | |

ISBN-10 | 9781482246889 | |

Release | 2014-12-17 | |

Pages | 414 | |

Download Link | Click Here |

Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis. |

Author | Rowan Garnier | |

ISBN-10 | 047196199X | |

Release | 1996 | |

Pages | 317 | |

Download Link | Click Here |

Proof" has been & remains one of the concepts which characterises mathematics. Covering basic propositional & predicate logic as well as discussing axiom systems & formal proofs, the book seeks to explain what mathematicians understand by proofs & how they are communicated. The authors explore the principle techniques of direct & indirect proof including induction, existence & uniqueness proofs, proof by contradiction, constructive & non-constructive proofs, etc. Many examples from analysis & modern algebra are included. The exceptionally clear style & presentation ensures that the book will be useful & enjoyable to those studying & interested in the notion of mathematical "proof. |

Author | John Taylor | |

ISBN-10 | 9781466514911 | |

Release | 2016-04-19 | |

Pages | 414 | |

Download Link | Click Here |

The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs. Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techniques that mathematicians adopt to prove their results, and offers advice and strategies for constructing proofs. It will improve students’ ability to understand proofs and construct correct proofs of their own. The first chapter of the text introduces the kind of reasoning that mathematicians use when writing their proofs and gives some example proofs to set the scene. The book then describes basic logic to enable an understanding of the structure of both individual mathematical statements and whole mathematical proofs. It also explains the notions of sets and functions and dissects several proofs with a view to exposing some of the underlying features common to most mathematical proofs. The remainder of the book delves further into different types of proof, including direct proof, proof using contrapositive, proof by contradiction, and mathematical induction. The authors also discuss existence and uniqueness proofs and the role of counter examples. |

Author | Burkard Polster | |

ISBN-10 | 9780802714312 | |

Release | 2004-05-01 | |

Pages | 58 | |

Download Link | Click Here |

Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon. |

Author | Richard H. Hammack | |

ISBN-10 | 0989472116 | |

Release | 2016-01-01 | |

Pages | 314 | |

Download Link | Click Here |

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. |

Author | CTI Reviews | |

ISBN-10 | 9781467298216 | |

Release | 2016-10-16 | |

Pages | 37 | |

Download Link | Click Here |

Facts101 is your complete guide to Mathematical Proofs, A Transition to Advanced Mathematics. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time. |

Author | Steven G. Krantz | |

ISBN-10 | 0387487441 | |

Release | 2011-05-13 | |

Pages | 264 | |

Download Link | Click Here |

This text explores the many transformations that the mathematical proof has undergone from its inception to its versatile, present-day use, considering the advent of high-speed computing machines. Though there are many truths to be discovered in this book, by the end it is clear that there is no formalized approach or standard method of discovery to date. Most of the proofs are discussed in detail with figures and equations accompanying them, allowing both the professional mathematician and those less familiar with mathematics to derive the same joy from reading this book. |

Author | Brahima Mbodje Ph. D. | |

ISBN-10 | 9781463429676 | |

Release | 2011-06-01 | |

Pages | 356 | |

Download Link | Click Here |

As its title indicates, this book is about logic, sets and mathematical proofs. It is a careful, patient and rigorous introduction for readers with very limited mathematical maturity. It teaches the reader not only how to read a mathematical proof, but also how to write one. To achieve this, we carefully lay out all the various proof methods encountered in mathematical discourse, give their logical justifications, and apply them to the study of topics [such as real numbers, relations, functions, sequences, fine sets, infinite sets, countable sets, uncountable sets and transfinite numbers] whose mastery is important for anyone contemplating advanced studies in mathematics. The book is completely self-contained; since the prerequisites for reading it are only a sound background in high school algebra. Though this book is meant to be a companion specifically for senior high school pupils and college undergraduate students, it will also be of immense value to anyone interested in acquiring the tools and way of thinking of the mathematician. |

Author | Joseph J. Rotman | |

ISBN-10 | UOM:39076002668155 | |

Release | 2006-12-01 | |

Pages | 237 | |

Download Link | Click Here |

Students learn how to read and write proofs by actually reading and writing them, asserts author Joseph J. Rotman, adding that merely reading about mathematics is no substitute for doing mathematics. In addition to teaching how to interpret and construct proofs, Professor Rotman's introductory text imparts other valuable mathematical tools and illustrates the intrinsic beauty and interest of mathematics. Journey into Mathematics offers a coherent story, with intriguing historical and etymological asides. The three-part treatment begins with the mechanics of writing proofs, including some very elementary mathematics--induction, binomial coefficients, and polygonal areas--that allow students to focus on the proofs without the distraction of absorbing unfamiliar ideas at the same time. Once they have acquired some geometric experience with the simpler classical notion of limit, they proceed to considerations of the area and circumference of circles. The text concludes with examinations of complex numbers and their application, via De Moivre's theorem, to real numbers. |

Author | Stan Gibilisco | |

ISBN-10 | 9780071469920 | |

Release | 2005-05-13 | |

Pages | 290 | |

Download Link | Click Here |

Almost every student has to study some sort of mathematical proofs, whether it be in geometry, trigonometry, or with higher-level topics. In addition, mathematical theorems have become an interesting course for many students outside of the mathematical arena, purely for the reasoning and logic that is needed to complete them. Therefore, it is not uncommon to have philosophy and law students grappling with proofs. This book is the perfect resource for demystifying the techniques and principles that govern the mathematical proof area, and is done with the standard “Demystified” level, questions and answers, and accessibility. |

Author | Robert B. Reisel | |

ISBN-10 | 9781461381884 | |

Release | 2012-12-06 | |

Pages | 120 | |

Download Link | Click Here |

Science students have to spend much of their time learning how to do laboratory work, even if they intend to become theoretical, rather than experimental, scientists. It is important that they understand how experiments are performed and what the results mean. In science the validity of ideas is checked by experiments. If a new idea does not work in the laboratory, it must be discarded. If it does work, it is accepted, at least tentatively. In science, therefore, laboratory experiments are the touchstones for the acceptance or rejection of results. Mathematics is different. This is not to say that experiments are not part of the subject. Numerical calculations and the examina tion of special and simplified cases are important in leading mathematicians to make conjectures, but the acceptance of a conjecture as a theorem only comes when a proof has been constructed. In other words, proofs are to mathematics as laboratory experiments are to science. Mathematics students must, therefore, learn to know what constitute valid proofs and how to construct them. How is this done? Like everything else, by doing. Mathematics students must try to prove results and then have their work criticized by experienced mathematicians. They must critically examine proofs, both correct and incorrect ones, and develop an appreciation of good style. They must, of course, start with easy proofs and build to more complicated ones. |

Author | Imre Lakatos | |

ISBN-10 | 0521290384 | |

Release | 1976-01-01 | |

Pages | 174 | |

Download Link | Click Here |

Proofs and Refutations is essential reading for all those interested in the methodology, the philosophy and the history of mathematics. Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations. |

Author | Matthias Beck | |

ISBN-10 | 1441970231 | |

Release | 2010-08-17 | |

Pages | 182 | |

Download Link | Click Here |

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions. |

Author | Daniel Solow | |

ISBN-10 | 0470392169 | |

Release | 2009-12-08 | |

Pages | 320 | |

Download Link | Click Here |

When engineers, computer scientists, and economists need to learn how to read, think about, and create proofs, they turn to Solow. In order to make the material more relevant, the exercises in each chapter have been revised and expanded. New and more complete discussions are included on how to use a previously-proved proposition in both the forward and backward processes. The fifth edition also presents new, self-contained chapters on uniqueness, induction, either/or, and max/min methods. Several final examples of how to read and do proofs are included in the final chapter to reinforce the reader’s knowledge of the various proof techniques. |